
Cost and Risk aware Skin lesion Classification using Bayesian Inference

Written by Daniel Blackley
Supervised by Professor Stephen Mckenna

Co­Supervised by Mr Jacob Carse

A thesis presented for the degree of
Bachelor of Computer Science

School of Science and Engineering
University of Dundee
United Kingdom

April 2021

Contents

1 Introduction 2

1.1 Project aims 3

2 Background Research 3

2.1 Neural Network Architectures . . . 3

2.2 Softmax and probabilities 4

2.3 Bayesian Inference 4

2.4 Bayes by Backprop 5

2.5 Monte­Carlo Dropout 6

2.6 Skin lesion classification 7

2.7 Cost of miss­classification 7

2.8 Comparison of methods 8

3 Design 9

3.1 ISIC 2019 9

3.2 Data 9

3.3 Network Architecture 10

3.4 Optimiser 11

3.5 Loss Function 11

3.6 Prior and Posterior Distributions . . 12

3.7 Training 13

3.8 Entropy as an Uncertainty estimation 13

4 Implementation 13

4.1 Python and Pytorch 13

4.2 Miscellaneous libraries 14

4.3 Evaluation 14

5 Results 15

5.1 ISIC Submission 15

5.2 Accuracy 15

5.3 Calibration 18

5.4 Cost 18

5.5 Discussion 19

6 Conclusion 22

7 Appraisal 23

8 Future Work 23

9 Acknowledgements 24

10 Appendices 24

10.1 Appendix A 24

10.2 Appendix B 24

10.3 Appendix C 24

10.4 Appendix D 24

10.5 Appendix E 24

10.6 Appendix E 24

10.7 Appendix F 24

11 References 25

1

Abstract

Skin lesions are areas of the skin that
have abnormal growths and can be an indi­
cation of skin cancer, thankfully, these can
usually be identified with a visual exami­
nation. Manual examination is a rather te­
dious and time consuming job for expert der­
matologists, recent advances in deep learn­
ing has helped automate the classification of
skin lesions while showing remarkable ac­
curacy. These tools do not necessarily take
into account the cost ofmiss­classifying a life
threatening lesion with a benign one how­
ever.

We employed three machine learning
algorithms: A standard softmax baseline,
Monte Carlo Dropout and Bayes by Back­
prop in a cost­aware environment and com­
pared the results. We found that when com­
pared solely with accuracy MC Dropout per­
forms best, but only slightly better than a
softmax response. When we employ our
model in a cost aware setting Bayes by Back­
prop performs best.

1 Introduction

Computer vision is the field relating to analysis
and understanding of digital images, tasks can in­
clude things such as segmentation[9][1] of images
or object detection[22]. Deep Learning has pro­
vided revolutionary advances in the field of com­
puter vision and has proven to be better than
many of the previous algorithms designed to han­
dle vision­related tasks[15][1], one area of which
Deep Learning is useful is in the medical imaging do­
main, particularly, the classification of different skin
lesions[1][3][6][10][15].

Deep Learning has shown to give comparable re­
sults to expert dermatologists [10] on the task of
skin lesion classification, however, it is worth noting
that most discussion around the use of deep learn­
ing in the field of medical imaging is not that deep
Learning models need to outperform human experts,

only compliment them. The most likely outcome
for deep learning is to make human­machine hybrid
teams[2][3]. Given this new perspective it is impor­
tant to consider not necessarily the accuracy of these
models, but instead their ability to perform as proba­
bilistic models that give well tuned distributions and
some level of uncertainty regarding their classifica­
tion decision. Part of having these two teamswork to­
gether means that we need to consider that not all skin
lesions are equal, malignant Melanoma being partic­
ularly deadly due to its ability to spread to other parts
of the body[24]. If we want our model to work well
in human­machine teams, we must also ensure that
our model is capable of not miss­classifying a deadly
skin lesion as a non­deadly skin lesion, i.e. it is im­
portant that our model to be conscious of the cost of
miss­classifying[4].

Recently, the International Skin Imaging Collab­
oration (ISIC) Proposed a challenge called ISIC
2019[8][7][29], the challenge was to classify dermo­
scopic images amongst 9 different skin lesion cat­
egories, one being an unknown class. This chal­
lenge posed as one of the primary inspirations for this
project, to research different methods of getting un­
certainty estimations and well calibrated predictive
distributions from deep learning models.

The gold standard for uncertainty estimations in
deep learning is Deep Ensembles[21], this method re­
quires the training of many networks and combines
them into a single, more powerful, network, this has
the downside of the being very computationally ex­
pensive to train and generate predictions with. An­
other method would be to use Bayesian Neural Net­
works, Bayesian Neural Networks put distribution
of values over the weights of a network and sam­
ples multiple times from this distribution, essentially
making an infinite ensemble of networks[5]. In this
project, we seek to give a comparison of 3 different
methods, Monte Carlo Dropout[11] (MC Dropout), a
standard Softmax Response[16] (SR) and Bayes by
Backprop[5] (BbB) in regards to uncertainty estima­
tion and the cost of miss­classification.

2

1.1 Project aims

A formal specification of our project is somewhat in­
appropriate, but we can list the following aims:

1. Train a competent network that can perform
adequately on the task of skin lesion classifi­
cation.

2. Generate some form of uncertainty estimation
for our proposed methods.

3. Produce results showing each of our meth­
ods while taking into account cost of miss­
classification.

4. Formulate evaluation metrics to emphasise the
strengths weakness of our proposed methods,
providing insight as of to which method may
perform better in different situations.

We specify requirement 1 further as the definition
of a competent model is somewhat vague. ISIC 2019
has a live leader­board with a submission system, we
decide to compare our models competency by sub­
mitting our methods to ISIC 2019 and comparing
them with similar models that have been submitted.

2 Background Research

We give a brief overview of all areas that are pivotal
to the aims of the project. We talk a lot of algorithms
that we implement in this section, all equations are
designed to mimic, as closely as possible, the equa­
tions of their respective papers. We also talk about
other algorithms we implement in later sections, the
difference is that the algorithms in this section are re­
quired understand the differences between the meth­
ods we wish to compare or are strongly related to
our aims, the later algorithms are just used to build
a competent classifier and should be the same across
all methods.

2.1 Neural Network Architectures

x1

x2

x3

h1

h2

h3

h4

y1

y2

0.2

0.05

−0.1

−0.25

0.55

0.4

0.25

0.1

0.9 0.75

0.6

0.45

0.2

0.05

0.55

0.4

0.9

0.75

1.25

1.1

Figure 1: A simple diagram of a MLP, showing
weight values and 3 input Neurons connected to a 4
Neuron hidden which then connects to 2 output Neu­
rons.

Multilayer perceptrons (MLPs) are what most
would think about whenwe refer to Neural Networks.
Their architecture is somewhat based on the opera­
tion of Neurons in the brain[14]. We can see in Figure
2.1, a MLP consists of a input layer, a output layer
and some number of hidden layers that are all con­
nected through connections we refer to as ’weights’.
In practice, a single Neuron will sum along each of
the the weights and add some bias, then we pass that
output through a non­linear transformation function,
and then pass that on again to the next neuron, this
continues until we arrive at our output layer[14]. In
our case, we can use the output of the final output
layer to make a classification decision.

These weights are usually initialised randomly,
then we give our network data to train on, which al­
lows us to calculate our weights values. When we try
to find the values for our weights, we try to find the
values that best explain the data, maximises a likeli­
hood function or, equivalently, minimise some loss
function. This is the frequentist perspective of which
we refer to as the Maximum Likelihood Estimation
(MLE).We note that the derivative of a function gives
the direction in which the function increases, or in the
case of loss functions, which tend to be negative, the
direction in which it decreases. This is the essence
of backpropogation and gradient descent, we calcu­
late the derivative of our loss function then attempt to

3

descend down the gradient, i.e. find the values that
minimise our loss.

Figure 2: Example of a Convolutional layer.

A Convolutional Neural network (ConvNet) is a
type of Network used particularly in image process­
ing that is an addition to a standard NN. They have
added hidden convolutional layers that help them to
detect complicated patterns in images. A convolu­
tional layer works by ’sliding’ a matrix (feature de­
tector) across the pixels of the input vector and, after
each slide, outputting the dot product of that section
of the image and the matrix (feature map), As seen
in Figure 2. In this case the weights are not a single
value, but is instead the matrix of values that we use
to calculate the output. After our convolutional layer
we also pool our output which helps to simplify the
model by reducing the spatial dimension of our fea­
ture map, State­of­the­art Deep Learning (DL) mod­
els use many of these convolutions and dense layers
together, counting millions of parameters[28].

ConvNets are usually developed using the current
resources and then scaled up for better accuracy as
more resources become available [28], Tan and Quoc
propose a compound coefficient that can be used to
scale Deep Learning models and then propose their
own set of models, EfficientNets, of which are easily
scalable and effective[28][13].

2.2 Softmax and probabilities

A probability distribution is some set of numbers that
describes the likelihood of a event occurring. We can
write p(y) To denote the probabilities of each out­
come, y1, y2, ..., yn of an event y, we also refer to
this as the probability distribution over y. Two key
properties of probability distributions is that all num­
bers must be non­negative and sum to 1. If we apply
a softmax function (1) to the raw output of a network,
we could think of that network as a probabilistic func­
tion, where each probability denotes a classification.
Defined as p(ŷ|x̂, w), where ŷ is our predicted classi­
fication label given our unknown input vector, x̂, and
w are the parameters of our model.

exp(ŷ)∑
n=1 exp(ŷn)

(1)

The equation for the Softmax Response (1) takes
the output vector of a network and applies a exponen­
tiation operation to ensure values are non­negative
and normalises the values so that they can sum to 1.
We note that non­negative values and summing to 1
are key properties of a probability distribution. Intu­
itively, if the softmaxed output of a network is meant
to represent a probability distribution across possible
classifications, then a measure for uncertainty could
simply be 1 ­ the maximum softmax response. Not
only is this easy and efficient to implement, but has
also been shown to be a surprisingly effective base­
line that we can use to compare to other methods[16].

2.3 Bayesian Inference

The intuition behind Bayes Theorum is that, when
we know some probability distribution p(Ck) and are
given some data, x, such that we want to know the
new posterior probability of p(Ck) given that data,
p(Ck|x), we must first consider the prior probabil­
ity p(Ck) and then update that when given our likeli­
hood, p(x|Ck). We put this all over P (x) which can
also be expressed as

∑
k p(x|Ck)p(Ck) to ensure that

4

our posterior probability distribution still sums to 1
over all values of k (2).

p(Ck|x) =
p(x|Ck)p(Ck)∑
k p(x|Ck)p(Ck)

=
p(x|Ck)p(Ck)

p(x)
(2)

Using our case of skin cancer diagnosis as a ba­
sic example of Bayes theorem, lets presume we have
a test that has diagnosed someone with cancer, be­
fore we conducted this test, we presumed the chance
of this patient having cancer is equivalent to the in­
cidence of cancer in the population. This would
be our prior belief p(Ccancer), then p(x|Ccancer) is
the reliability or likelihood of our test’s classifica­
tion decision. From this we then calculate the ac­
tual, posterior, probability that our patient has cancer,
p(Ccancer|x), by using the reliability, p(x|Ccancer)
of the test to update the prior belief p(Ccancer).

x1

x2

x3

h1

h2

h3

h4

y1

y2

Figure 3: A Bayesian Neural Network, we use distri­
butions of values instead of fixed values

Let us consider using Bayes theorem in a differ­
ent way, we define our network as p(w,D), where w
is our model parameters and D is our training data,
{xi, yi}i. We can now recall how a frequentist Neu­
ral Network is trained through MLE, that is, we try
to maximise the likelihood (or equivalently minimise
some loss function), p(D|w). Now we consider the
Bayesian perspective, instead of training tomaximise
the likelihood, we train to maximise the posterior dis­
tribution p(w|D) via Maximum a Posteriori (MAP).
This is equivalent to MLE, except we now have an
added prior belief about the weights, p(D|w)p(w).
Consider if our data is 4 coin flips, and every coin

flip lands on heads, the aforementioned frequentist
perspective would conclude that all future coin tosses
would land on heads, whereas the Bayesian perspec­
tive, given a reasonable prior, would come to a less
extreme conclusion. We call this overfitting, when
our model performs well on the training data but fails
to generalise to real world examples. We call meth­
ods to reduce overfitting regularization techniques.

p(y|x) =
∫

p(y|x,w)p(w|D)dw (3)

Bayesian Inference, unlike a standard Neural Net­
work which uses fixed values as weights as discussed
in section 2.1, uses a distribution of values to repre­
sent our weights and biases, as seen in Figure 2.3.
The primary benefit being that our model cannot
over­fit to the training data. Bayesian Inference is
the process of computing the posterior distribution
p(w|D) which allows us to make a prediction con­
sidering all possible values for w (3). Carrying out a
predictions as described in equation (3) is intractable
as, even though we can choose our prior distribution
p(w) and we can work out the likelihood p(D|w)
given the data, trying to calculate p(D) (the denomi­
nator when trying to calculate p(w|D)) requires inte­
gration over the high dimensional space of weights.

2.4 Bayes by Backprop

Bayes by Backprop is a method proposed by Blun­
dell et al[5] to train a Bayesian Neural Network while
also being able to leverage our usual backpropagation
methods. As mentioned earlier Inference is computa­
tionally intractable, so instead we use variational In­
ference. Variational Inference approximates the true
posterior distribution by creating a separate, approx­
imate distribution q(w|θ). We then calculate the pa­
rameters of θ that minimises the Kullback­Leiber Di­
vergence (KL­Divergence) between our variational
posterior and the true posterior, shown in Equation
4.

5

KL[q(w|θ)||P (w|D)] =∫
q(w|θ) log q(w|θ)

P (w|D)
dw

(4)

However, we still don’t know the value of p(w|D),
so we can reformulate our cost function into equation
5, the negative of this is also referred to as the Evi­
dence Lower Bound (ELBO), or we can refer to this
loss as the Varational Free Energy. We then seek to
minimise this loss and, as a result, we maximise the
ELBO.We also mention that our likelihood, p(D|w),
is the cross entropy loss function, which combines the
negative log likelihood with the softmax output, we
discuss this loss function in section 3.5.

F (D, θ) =

∫
q(w|θ) log q(w|θ)

P (w)

− q(w|θ) logP (D|w)dw
(5)

F (D, θ) ≈
n∑
i

log q(wi|θ)− logP (wi)− logP (D|wi)
(6)

Minimising the ELBO by this method is still
costly, so Blundell recommends that we use monte
carlo sampling to approximate F (D, θ), as seen in
equation 6.

There is still one last thing to consider when train­
ing our Bayesian Neural Network. We cannot per­
form our usual backpropogation algorithms on our
distribution (parameterized by θ). To deal with
this we use something called the reparameterization
trick[19]. The essence of the reparameterization trick
is that we rewrite our expectation over q so that the
distribution to which we take the gradient is indepen­
dent of θ. We use the optimisation steps as described
by Blundell below:

1. Sample ϵ ∼ N (0, 1)

2. Let w = µ+ log(1 + exp(ρ)) ◦ ϵ

3. Let θ = (µ, ρ)

4. Let f(w, θ) = log q(w|θ)− logP (w)P (D|w)

5. Calculate the Gradient with respect to themean
∆µ = ∂f(w,θ)

∂w + ∂f(w,θ)
∂µ

6. Calculate the gradient with respect to ρ: ∆ρ =
∂f(w,θ)

∂w
ϵ

1+exp(−ρ) +
∂f(w,θ)

∂ρ

7. Update varational Parameters

WhereN is a normal distribution, µ is the mean and
ρ is our standard deviation, the varational posterior
parameters are θ = (µ, ρ) and ◦ is point­wise multi­
plication

Blundell points out that ∂f(w,θ)
∂w is the same gra­

dient found by our usual backpropagation methods,
so we can leverage our backpropagation algorithms
normally.

2.5 Monte­Carlo Dropout

Figure 4: Dropout being applied to a neural network.

Dropout is a popular and effective regularization
technique [26]. Dropout consists of ’dropping’ neu­
rons from a network (setting their activation function
to 0) as seen in Figure 8. We usually use some prob­
ability value to determine whether or not a Neuron
should be randomly dropped. When we evaluate the
model we turnDropout off, utilising all neurons in the
network. Dropout prevents overfitting by stopping
complex co­adaption of neurons. Recently Gal et al
proposed a new method called MC Dropout[11]. Gal
proves that running multiple forward passes through

6

a network with dropout on and averaging the results
is actually mathematically equivalent to Bayesian In­
ference.

µpred =
1

T

T∑
t=1

p(y|x, ŵt) (7)

Where ŵt is the weights at t forward passes

The implementation is remarkably simple. we need

only average our output over the multiple passes as
defined in equation 7. The equivalence to Bayesian
inference is that, in Bayesian inference we sample
multiple times from our varational posterior, averag­
ing the results, in MC Dropout, every forward pass
we run is equivalent to sampling from a varational
posterior[11]. This method brings many benefits, not
only is it computationally cheap but models that have
been trained with dropout do not need to be retrained
and can use MC Dropout immediately.

Figure 5: Different types of skin lesions

2.6 Skin lesion classification

Skin cancer is the most common type of cancer, each
year we see two to three million new skin cancer
cases, with 132,00 being melanoma[24]. Thank­
fully, skin lesions can be identified by a dermatol­
ogist with an unobtrusive visual examination. Pre­
viously, computer aided support was limited to cre­
ating algorithms that attempted to identify the same
visual cues that dermatologists identified[15][7]. DL
can automatically extract these higher level features,
automating much of the process and showing great
results[10].

Skin cancer is usually grouped into non­MEL
and MEL categories, due to the fact that MEL
accounts for the majority of skin cancer related
deaths[24][7][15]. It is critical then, that MEL skin
lesions do not get incorrectly classified as non­MEL.

2.7 Cost of miss­classification

Figure 6: The cost matrix Lkj , The rows correspond
to the true class Ck and the columns correspond to
the predicted class Cj . Cost matrix was provided
by a dermatologist who works with the University of
Dundee

Even though it is convenient and intuitive to use ac­

7

curacy to compare performance of Neural Networks,
using accuracy presumes that all incorrect classifi­
cations are equally costly. This is not the case, as
stated in section 2.6, melanoma is the deadliest form
of skin cancer. In cases like this, we don’t just want
our network to miss­classify, but to miss­classify in
a ’correct’ and non costly way. To do this we intro­
duce a cost matrix, as seen in Figure 6. The classes
appearing in Figure 6 are as follows: Melanoma
(MEL), Melanocytic Nevus (NV), Basal Cell Carci­
noma (BCC), Actinic Keratosis (AK), Benign Ker­
atosis (BKL), Dermatofibroma (DF), Vascular Le­
sion (VASC) and Squamous Cell Carcinoma (SCC).

EC(Cj) =
∑
K

Lkjp(Ck|x) (8)

In this cost matrix we can find the cost of miss­
classifying one class as another by using our pre­
dicted label, Cj , and our true label, Ck, and then
looking up the relevant cost in the matrix Lkj (note
that diagonal values, when k = j, the cost is al­
ways 0, as we do not incur penalties for correct
predictions). In a real world setting, we do not
have the ground truth, so we employ the standard
method to get Expected Cost values given a probabil­
ity distribution[4]. Given our softmaxed outputs of
the network p(Ck|x), where x is our input vector, we
can calculate the expected cost by summing across
all the true labels and multiplying by the probability
that our classification is correct. By doing this we
can calculate the Expected Cost of making a classi­
fication decision EC(Cj), as shown in equation (8).
When concerned with costs, we are frequently only
concerned with the classification decision that min­
imises Expected Cost, i.e. The value of j that min­
imises equation (6), we refer to this as the Lowest
Expected Cost (LEC).

We consider as well that, when wemake a predic­
tion using the maximum probability, we could also
think about this as applying a cost matrix with a cost
of 1 on everywhere except the diagonal (i.e. cost is
always 1 when j! = k), we call this a flattened ma­
trix. Considering this and the fact that we will be
using Figure 6 later in our results section, we avoid

confusion by simply referring to Figure 6 as ”our cost
matrix” and, unless specified otherwise, we can pre­
sume that all mentions of using a cost matrix refers
to Figure 6 and not our flattened matrix.

We also would like to note that we make some
assumptions about Figure 6. When this cost matrix
was created, it was made to be a generic cost matrix
that can be applied to any skin lesion classifier. In a
real world setting, we would see that the cost of miss­
classifying one lesion as another is highly specific to
where our model is deployed in the diagnostic pro­
cess. As a result, we just assume that this cost matrix
works well with our population and use case.

2.8 Comparison of methods

BbB is given the disadvantage due to having two
times the number of parameters, having both a prior
and posterior distribution for the weights. Blundell
states that we do not train our prior distribution, as
this gives detrimental results[5], instead choose our
starting prior parameters carefully. Despite this, BbB
still is the most computationally expensive method,
taking roughly two times as long as Dropout[5].

MC Dropout also has a substantial advantage
over BbB due to its ease of implementation and
frequent use as a regularization technique[11][26].
Dropout comes as a built in method in a lot of ma­
chine learning frameworks, whereas we had to im­
plement BbB using Pytorch’s gaussian classes. This
means that as the libraries used get updated we
will still need to maintain our BbB implementation
whereas dropout will be maintained by the develop­
ers of the framework. Due to dropouts prevalence as
a regularization technique most models do not need
to be retrained and can begin using MCDropout with
no extra cost[11], except the time take to compute
the forward passes. MC Dropout then only needs to
demonstrate some benefit to be considered worth im­
plementing, it is worth noting that this isn’t guaran­
teed as we found a study that shows MC Dropout is
only comparable to SR and performed worse on the
ImageNet dataset[12].

8

We also note that we cannot find any comparison
of our methods on the specific case of using a cost
matrix to correctly miss­classify skin lesions.

3 Design

The primary aim of this project was to give a com­
parison of different variational inference methods,
the building of a good classifier occurred to serve
this aim. As a result, describing official design tech­
niques seem somewhat inappropriate, The program
itself is rather small in scope, not being able to be
broken down into many parts. Most of the time was
used tweaking the network to find the optimal pa­
rameters to train a competent classifier. The only
design methodology that was used was the Waterfall
approach, perhaps if given a larger program to imple­
ment, it would be easier to break into smaller parts,
and a agile style approach may be better. Instead we
go over and justify some of our choices for how we
designed the architecture of our Network, the primary
difference between the algorithms here and in section
2 being that these algorithms work to create a com­
petent classifier and are not pivotal to understanding
the aims of the project.

3.1 ISIC 2019

Standard datasets for skin lesions tend to be small
with around 200 images and contain very few
classes[18]. For the past few years the International
Skin Imaging Collaboration (ISIC) have been re­
alising annual challenges with progressively larger
datasets. We chose to use the ISIC 2019 dataset,
which was composed of the HAM 10000[29], BCN
20000[8] and the MSK dataset[7]. ISIC 2019 has a
total of 25,331 images of 8 different classes. They
also released a second set without ground truth la­
bels, which models could predict on and submit their
score to the ISIC 2019 live leaderboard. This sec­
ond set had 8,238 images with a 9th ’unknown’ class.
ISIC does not specify what the unknown class is com­

prised of, but it is presumably out of sample data.
ISIC scores models based on their ability to classify
the 8 identified classes and the models ability to mea­
sure uncertainty on out of sample data.

When we talk about uncertainty of out of sample
data we refer to aleatoric uncertainty, because we do
not have access to this 9th class we will not be mea­
suring aleatoric uncertainty, but instead epistemic un­
certainty, things our model could in theory learn, but
doesn’t due to lack of training data.

We chose the ISIC 2019 dataset because it is one
of the largest publicly availible skin lesion dataset
and because the live leaderboard is a convenient way
to compare model competency. There are some prob­
lems with ISIC 2019 however. There is a major class
imbalance we need to consider, the largest class con­
tains 12,875 and the smallest class contains 239 sam­
ples. We detail how we overcome this problem in the
coming sections.

3.2 Data

As we mentioned, one of the problems we face with
ISIC 2019 is a large imbalance between the smallest
and largest class, to help artificially boost the number
of samples in our training data, we can Augment the
data before feeding it into our network. Allowing us
to see slightly changed versions of the same image
allows our network to learn more robust features, as
well as benefiting our sampling method described in
section 3.5. Augmentations on images usually con­
sist of things like Jittering various properties of the
image (brightness, hue, saturation etc.) or altering
the contents of the image via cropping or zooming.
We can see the results of performing our Augmen­
tations in Figure 7. In the interest of clarity, here is
a brief list of all our transformations: horizontal and
vertical flips, random rotation by between 35◦ and
−35◦, crop each side equally (center crop) by a sixth
of the image, shearing by 0.05%, random resize and
crop by another sixth, down to a image size of 224
pixels, saturation, hue and brightness are jittered by
20%, randomly cut out holes 4 holes with probability

9

0.2 per hole and we normalize the image. We apply
these augmentations to only the training set, the only

transformwe apply to our validation and training data
was a resize to and image size of 224.

Figure 7: Figure showing our augmentations. Top row shows skin lesions with no augmentations, then we
see skin lesions with every augmentation except normalization and finally we see all augmentations

To train and test our network we must also split the
dataset into different sets. We use 70% of the images
to train our network, then we 10% as a validation set,
which we test our network on after every epoch to
ascertain whether our model is generalising well to
real world data or if it is over­fitting. We use the re­
maining 20% to test our models abilities, on totally
unseen data. We also batch our images into mini­
batches sizes of 16, this comes with a couple bene­
fits, but we are particularly concerned with the faster
computation times, thanks to the parallelism of mod­
ern computing platforms[17]

3.3 Network Architecture

Due to the costly nature of training a DNN and
our limited resources, we chose to use Efficient­
Net with compound Scaling 0 (EfficientNetb0), we
feed the augmented image to EfficientNetb0, then ex­
tract the output and use 2D adaptive average pool­
ing. We pipeline that output into a single 512 neuron

dense/Bayesian layer.

We also use batch normalization, this normalises
each of our batches to have a mean of 0 and stan­
dard deviation of 1, this has the effect of stabilising
the learning process[17]. We use the Rectified Lin­
ear (ReLu) activation function, a standard activation
function[23] that works by setting all negative input
to 0 or allowing the input to pass through unchanged.
We also use a drop rate of 0.5, Gal recommends a
drop rate of 0.1 or 0.2 in his original paper, but he
kept network architecture small to avoid overfitting,
our network was too complicated to try this. Using a
drop rate of 0.5 retained dropouts regularization ben­
efit, this value of 0.5 has shown toworkwell withMC
Dropout[3]. The last regularization technique we use
is weight decay or L2 regularization, this punishes
the network when it uses weights that are too large.
The intuition being that smaller weight values force
the network to suppress any irrelevant components
by solving the problem using the smallest weights
possible[20].

10

The primary benefit of this architecture is that, we
need not run multiple passes through the entire Ef­
ficientNetb0 to obtain our predictions, simply once
through EfficientNetb0, then we run multiple times
through our 512 neuron Bayesian layer or dense layer
with dropout turned on.

EfficientNet also has a pretrained version avail­
able that we make use of, we download weights that
have been pretrained on the ImageNet dataset. This
has been proven to either give a small benefit as our
model already has knowledge of how to identify ba­
sic patterns[30].

3.4 Optimiser

For this network we opted to use the Stochastic Gra­
dient Descent (SGD) Optimiser, with a momentum
value of 0.9, a weight decay value of 0.00001 and a
cyclic learning rate scheduler. Momentum attempts
guess the size of the step we take in gradient descent
based on the previous step, i.e. if a large step was
taken previously, its intuitive to presume that the next
step will also be large[27]. We found that using a
cyclic learning rate scheduler also gave us notably
better results, this scheduler functioned by chang­
ing the learning rate up to some specified maximum
learning rate, then stepping down to some minimum
learning rate. The theory is that, when we perform
gradient descent we attempt to find the global min­
ima but can sometimes get stuck in local minima. A
cyclic scheduler can help us escape local minima[25].
We used a step up size of every 5 epochs, then a step
down size of a further 5 epochs, we then decrease the
maximum learning rate by half every time we reach
our minimum learning rate.

We try to keep both models as similar as possible
to keep a fair comparison, however, we found that
the Bayesian Layers required a notably larger initial
learning rate, as a result, we set the max learning rate
of our Bayesian layers to be 0.08 and the learning rate
of our EfficientNet layers to be 0.01. Both methods
used a minimum learning rate of 0.0001.

3.5 Loss Function

Due to our need for well calibrated distributions and
large class imbalance, we initially decided to go with
the weighted Cross entropy loss function, defined as
equation (9). This loss function has the benefit of
being able to accept weights to punish more for in­
correct predictions on classes with fewer samples.

Loss = −
C∑

c=1

wc(yc + log(pc)) (9)

Where wc is our assigned class weight, yi is our
ground truth label and pc is our softmaxed

predictions

The cross entropy loss attempts to combine the soft­
max output of a network with the negative log like­
lihood of the data. We used equation (10) to obtain
our weights for our classes, we can see that, using
this equation, if there is a higher number of samples
in a class, we would obtain a larger weight. equation
(10) isn’t fundamentally different from simply doing
1
Nc

, but this way our values stay above 1, which helps
with debugging.

wc =
N

Nc
(10)

Where wc is the weight for class c, N is the total
number of samples and Nc is the number of samples

in our current class.

We can weight our loss function to deal with the class
imbalance, but due to the extreme nature of our im­
balance, with the smallest class being less than 1%
of the total dataset, we found that employing strat­
ified sampling gave us better results. We use our
class weights to generate probabilities that we use to
determine how often we should sample each image.
This means that some images could be sampled hun­
dreds of times more than others, which is why it was
pivotal that we had such a wide variety of data aug­
mentations. As a result, we decided to use two loss
functions, one unweighted to deal with training and
backpropogation, and one using the same weights we

11

used to randomly sample to create a weighted cross
entropy loss function to use for the validation set, of
which we sample from normally.

3.6 Prior and Posterior Distributions

Asmentioned in section 2.4, Bayes by Backprop uses
both a prior and posterior distribution of which we
can choose the type. For our varational posterior we
use a gaussian distribution and for our prior we use
a gaussian scale mixture. This is a scaled mixture of
two gaussian distributions, Both have a mean value
of 0 but with differing variances. When variance 1
(σ1) is greater than variance 2 (σ2) and variance 2 is
much less than 1 (σ2 << 1) we obtain a ”spike and
slab” prior that concentrates around the 0 mean. We
define this distributions probability function as equa­

tion (11), where wj is the jth weight of the network
and N (x|µ, σ2) is the gaussian density evaluated at
x.

log p(w) =∑
j

log(πN (wj |0, σ2
1) + (1− π)N (wj |0, σ2

2))

(11)

We found that values of π = 0.5, σ1 = 1 and
σ2 = 0.0025 worked best for us. We chose this prior
and posterior as we wish to stay as close to Blundells
original paper as possible, though we acknowledge
there are alternatives[5]. When is comes to monte
carlo sampling from our varational posterior during
training time, we found that 3 samples gave good re­
sults.

(a) Softmax accuracy by epoch (b) Softmax loss by epoch

(c) BbB accuracy by epoch (d) BbB loss by epoch

Figure 8: Our training curves

12

3.7 Training

We feed our training data to our network and perform
backpropogation and gradient descent using the loss
function and optimiser as described above. We train
our network on 50 epochs, that is, we give our net­
work the number of samples in the training dataset
50 times over. We attach the curves we used to de­
bug ourmodel, showing our loss values over time and
our accuracy over time in Figure 8. We use our train­
ing curves by tweaking the parameters of our network
and observing the effect on the validation loss. Some
slight overfitting does seem to occur after around 30
epochs for the softmax response. We instead consider
running only 30 or 40 epochs through the network
and also tried performing early stopping based on
the best loss value across 100 epochs. These results
ended up being unreliable or consistently worse on
across all our metrics in Section 6, so we decided to
use 50 epochs. We note as well that, for MC Dropout
and SR we use the same model after 50 epochs of
training, as this was an advantage Gal mentioned[11],
that dropout can be applied to existing models. For
BbB we train a separate network.

3.8 Entropy as an Uncertainty estima­
tion

Entropy is a concept in Information Theory related to
measuring the level of ”Information” or uncertainty
across a set of probabilities. We chose to use Entropy
measured in bits (log2) to quantify our level of un­
certainty across predictions as this was one method
that was recommended by Gal[11] as well as being
proven by other studies to be an effective uncertainty
estimation[9][3]. We combine this with running mul­
tiple forward passes to get the average entropy by for­
ward pass show by equation (12). We note that there
have been some studies showing that variance across
predictions actually gives better uncertainty values,
but we found that variance gave us rather poor val­
ues while entropy gave us better values.

µH =

1

T

T∑
t=1

−
n∑

i=1

p(yi|xi, ŵt) log2(p(ŷi|x̂i, ŵt))
(12)

Hnorm =
H −Hmin

Hmax −Hmin
(13)

Where H is entropy

We also note that entropy doesn’t necessarily end up
within the range of 0­1, so we used normalised en­
tropy instead, shown in equation (13).

4 Implementation

In this section we talk less about the algorithms we
used to create a competent classifier, but instead the
Technology we use and the metrics we think will be
useful to evaluate this classifier.

4.1 Python and Pytorch

Everything was implemented using the Python Pro­
gramming Language. Python was the most obvious
choice, not only is its focus on simple and ”Pythonic”
approach to programming allow us to rapidly pro­
totype, but Python also has a wide range of avail­
able Machine Learning Libraries and utility libraries
based around Machine Learning. There were a few
different options to consider with regards to relevant
Frameworks.

Pytorch is a widely used, open source platform
for machine learning. It provides high­level machine
learning tools including things like automatic back­
propogation. Keras was another good option, it is
the most widely used platform for Machine Learn­
ing and is notable for being beginner friendly, allow­
ing rapid and easy deployment. We decided on Py­
torch however, as Keras ended up being too beginner

13

friendly, deliberately hiding a lot of its more intri­
cate functions. Some of our methods required sub­
stantial modification to the training and testing pro­
cedures, Keras doesn’t allow you access to these in­
nately, whereas Pytorch does, making Pytorch easier
to work with.

4.2 Miscellaneous libraries

The majority of the project was made possible with
Python and Pytorch, but in the interest of clarity, we
quickly summarise and justify our choices for some
of the other software that played a large role in this
project:
EfficientNet­Pytorch: The EfficieNet model we
used had been created and maintained by github user
lukemelas. We install and use his implementation de­
signed for pytorch, which follows the implimentation
as defined in the original paper.
matplotlib/seaborn: An industry standard, both
matplotlib and seaborn are easy to use graphing li­
braries that we use to plot all graphs seen in this
project.
sklearn: A helpful machine learning library that we
used for calculating the area under our curves.
Pandas: Pandas is a flexible and open source data
manipulation library, we use this to load in, manipu­
late and handle our large volumes of data.
PIL: Python Imaging Library (PIL) has built in sup­
port with pytorch and has fast computation times,
which was helpful for the large number of images we
rapidly loaded.
numpy: Numpy is a fundamental package for scien­
tific programming, allowing high level manipulation
of multidimensional arrays, we used this to manipu­
late the output of our model and generate the results
that we plot.
Github: Github was used for source control, allow­
ing us to roll back any mistakes during implemen­
tation and create different branches for our different
methods.

4.3 Evaluation

We used a variety of techniques to visualise the per­
formance of each of our proposed methods. To gen­
erate our predictions we run 100 forward passes (Or
sample 100 times from the variational posterior) and
average them, as described in Section 2.

First we compare our different methods by the
simplest approach, we compare accuracy and the
number of correct and incorrect classifications per
sample. These plots are fairly simple and will be eas­
ier to explain in the results section, alongside their
relevant figures. The only technique used that re­
quires some more in depth explanation would be the
risk coverage curve. For our risk coverage curve we
plot accuracy by coverage, coverage being the per­
centage of the data­set that is being tested. To decide
which percentage to test and which percentage to re­
ject, we use a standard reject option[4].

We use some parameter θ as a threshold, all prob­
abilities below that threshold will be rejected and re­
moved. To get our value of θ,we retreive all the
classification decisions and their relevant probabil­
ity, then find the lowest probability in that list and
use that value as a value for θ, rejecting that sample.
We then re­plot accuracy and find the second lowest
probability in our list, using that for θ, then we re­plot
accuracy again... and continue until the entire data­
set has been rejected by the threshold, and we end up
with a coverage of 0 and accuracy of 100 (We decide
to make no classifications 100% accurate so that the
graph is easier to read).

We should also note that, when we consider cov­
erage curves, we don’t usually comment on the val­
ues on the far left side of the graph, as it can be noisy
at low values of coverage (Caused by a overconfident
prediction being incorrect). We choose risk coverage
curves as they give a nice overview of how the model
performs across the entire dataset.

We recall that, as we stated earlier, accuracy is not
a good comparison of how well our model will per­
form in a human­machine team. We can then look at

14

how well calibrated our machines predicted distribu­
tions are, The idea behind a well calibrated probabil­
ity distribution is that, if we have 100 samplesmaking
the same classification decision with 60% certainty,
we would expect 60 of those predictions will be the
correct classification label. To create a visual com­
parison we use reliability diagrams of each of our
proposed methods. We group all of our predictions
by probability range, i.e. probabilities in the range
0.0 to 0.2, 0.4 to 0.6 ... 0.8 to 1.0, Then we count and
the frequency of the relative classification occurring.

We also wish to measure how costly each of our
methods are using our previously mentioned cost ma­
trix (Figure 6 in section 2.7), to do this we use a risk
coverage curve and a confusion matrix. A confusion
matrix is a easy way to visualise the incorrect classi­

fications of our model. Each row of the matrix rep­
resents the instances in the true class, while each col­
umn represents the instances in a predicted class, if
our model makes a classification decision, we check
the true label add 1 into the relevant point in our ma­
trix.

For our second set of risk coverage curves, we
employ a similar method as for accuracy, but instead
we use our LEC to make a classification decision and
we measure Test­Cost instead of accuracy. Test cost
is the average actual cost incurred for a classification
decision on the test set. We also use a similar method
for finding θ as we did for accuracy, except we now
search for the highest LEC in our list of LEC classi­
fication values, and use that as θ.

Figure 9: Figure showing our position on the ISIC leaderboard

5 Results

5.1 ISIC Submission

We quickly take the introduction of our results sec­
tion to observe our submission to ISIC, Figure 9. The
most interesting thing to note is that, as far as we can
tell, we have the best EfficientNetb0 model on the
leaderboard, with the next best EfficientNetb0 taking
place 172, 15 places below us. ISIC only allows one
spot on the leaderboard for all your submissions, and
we found BbB performed particularly well on their
unknown set. We don’t want to make much comment
on BbB’s ISIC performance, as ISIC doesn’t give us
much information about what their test set contains.
We can say that this model performs competently,

compared to other models. MCDropout scored simi­
larly, getting a score of 0.445 and SR obtained 0.444,
still better than the next best EfficientNetb0 model.

5.2 Accuracy

We observe Figure 10, which shows the accuracy at
each forwards pass and shows entropy as a shaded
background. From this we see that after around
30 forward passes our accuracy becomes stable and
doesn’t require many more forward passes. It is in­
teresting to observe that MC Dropout does not out­
perform the Softmax Response but performs compa­
rably. We hoped to see entropy values growing as
forward passes continued, but this also seemed some­
what stable after the first few passes. BbB seems to

15

Figure 10: Accuracy by Forward pass Figure 11: Accuracy by Coverage

(a) Softmax Entropy (b) Softmax Baseline

(c) MC Dropout Entropy (d) BbB Entropy

Figure 12: Various histograms showing Entropy across correct and incorrect predictions

16

(a) Reliability diagram showing the relative frequency of positive samples in each probability interval

(b) Number of Softmax samples in each interval

(c) Number of MC Dropout samples in each interval

(d) Number of BbB samples in each interval

Figure 13: Histograms that show the number of samples that fall within each probability range, alongside
our Reliability Diagram

17

be still slightly increasing in accuracy, implying that
perhaps more than 100 passes could give further im­
provements.

We now turn our attention to Figure 11, our risk
coverage curve. Once again, we see that our results
are similar enough that we cannot draw any definitive
conclusions pertaining to each method, these results
are somewhat expected after observing Figure 10. It
is Interesting to note that, if concerned solely with the
binarymetric of accuracy, thenMCDropout might be
worth implementing, even if the increase in accuracy
is very slight.

Giving some form of uncertainty estimation for
model predictions would help with human­machine
teams working together. For this to be viable how­
ever, we need to ensure that more incorrect classi­
fications have a higher uncertainty metric. We can
look to Figure 12(a, c and d), were we have plotted
the number of correct and incorrect samples, with our
uncertainty metric, normalized entropy. From these
Figure we can see that, for MC Dropout and BbB, in­
correct classifications have a higher normalized en­
tropy. We can conclude that BbB and MC Dropout
do perform better in this regard, however it is still
somewhat unsatisfactory as the incorrect predictions
peak at around 0.5 entropy, and even then, there is
more correct classifications than incorrect classifica­
tions, making it impossible to give intuitive threshold
of which all values afterwards should be rejected. We
also mentioned that an intuitive baseline for uncer­
tainty is simply 1 ­ the max classification probability,
to be fair to the softmax response, we plotted both 1 ­
max probability in Figure 12(b). We see that neither
performs particularly well, but using entropy as a un­
certainty metric was better than this simple baseline.
We also show a full breakdown of these histograms
by class in Appendix E

5.3 Calibration

Figure 13a shows our reliability diagrams and Figure
13(b c and d) shows Histograms with the number of
samples that fall within each probability interval for
each method. We include histograms showing sam­

ples in probability intervals between 0.0­0.2 in Ap­
pendix E, we do not include them here as they can
make the Figure 13 difficult to read. Observing Fig­
ure 13(b and c), We decide to be somewhat uncertain
of our VASC and DF results for MCDropout and SR,
as we can sometimes see less than 20 samples in our
probability intervals. We plot a dashed black line on
our reliability diagrams for reference to what a per­
fectly calibrated model would achieve.

Interestingly, we see that BbB seems to be consis­
tently better calibrated than SR and MC dropout on
some classes, and those that it isn’t better calibrated
to, such as VASC, SCC, the results are close enough
that it is fair to conclude that it performs compara­
bly and not worse. We also note that, in Figure 13(b
c and d), the majority of samples in the each inter­
val for MC Dropout and the SR primarily lie within
the 0.8­1.0 range, whereas BbB is less confident in
its correct predictions, increasing the viability of the
BbB reliability plots on the smaller classes. This re­
sult is likely due to the fact that Bayesian networks
avoid making extreme conclusions when observing
the training data, as discussed in Section 2.3.

5.4 Cost

We apply our cost matrix as described in Section
2.7 and now choose our predictions based on the
lowest expected cost (LEC). We normalize our con­
fusion matrices (Figure 15) by dividing across the
rows by the total number of samples in the respec­
tive class. We pay particular attention to the MEL
and SCC miss­classifications, as these are the most
costly miss­classifications as defined in our cost ma­
trix. We see our intended results for MEL, noting
that there are roughly 17% more correct MEL classi­
fications. More importantly themiss­classification of
MEL as NV (Which carries a cost of 150) goes from
roughly 17% to below 0.05%. SCC Classifications
change very little, however we also note that costly
SCC miss­classifications are BKL, DF and NV, of
which were already less than 10% of the miss classi­
fications, and do occur less after the cost matrix has
been applied, but not on as much of a scale as MEL
miss­classifications.

18

Figure 14: Figure showing Average Test cost at every Forward Pass

In our previous results we used accuracy as it is
an intuitive and easy to understand metric. In Fig­
ure 14 we plot a similar cost by forward pass as seen
earlier in Figure 10, except now we use our cost ma­
trix to get the actual cost of our predictions. Notably,
we now evaluate a range of values, instead of get­
ting the binary classification of correct or incorrect
to calculate accuracy. This brings with it some con­
fusion, whereas with accuracy it is easy to understand
howmuch better one method can be, the idea that one
method might save 1 cost can be a difficult benefit
to evaluate. Before our discussion we acknowledge
that a difference of 1 cost can only be determined to
be significant by the creator of the cost matrix, how­
ever due to the nature of our cost matrix being general
and unrealistic, as discussed in Section 2.7, we shall
presume that any small increase in cost is significant.

We look at Figure 14, showing that our average
test cost seems consistent after 100 forward passes,
giving some viability to our results. We acknowledge
that BbB doesn’t fully flatten out, and both methods
require more passes to stabilise when compared with
Figure 10, we concluded that more than 40 passes is
adequate for both methods.

Figure 16 shows our coverages by average test
cost. Figure 16(b) gives some interesting results,
showing that BbB consistently performs better across

all values of coverage. This result is rather intuitive,
given the knowledge that BbB is better calibrated we
could presume that it would be able to make more
cost­aware decisions. It is also not surprising then,
considering MC Dropout and SR performed compa­
rably in our Reliability diagram, that they repeat that
pattern again, being very similar, with MC Dropout
performing slightly better. By breaking Figure 16(b)
down by class, Figure 16(a), we can gain some fur­
ther insight to why BbB performs better. We note that
BbB performs remarkably well onMEL, nearly halv­
ing the test cost across all coverage values when com­
pared to the SR orMCDropout, BbB performs worse
on less costly classes, such as NV or BKL, likely due
to potential costly MEL miss­classifications instead
becoming less costly BKL or NV classifications.

5.5 Discussion

Table 1 aims to give a general overview of our re­
sults, as well as showing the time taken to run our
forward passes. AUC scores give us a easy single
metric for to represent our accuracy or cost over all
the values of coverage, we computed these from Fig­
ure 11 and Figure 16 respectively. When concerned
with only accuracy we can say that all methods are
similar enough that we do not see a notable improve­

19

(a) Confusion matrix showing the Softmax response’s
Normalized predictions with a cost matrix applied

(b) Confusion matrix showing the Softmax response’s
Normalized predictions without a cost matrix applied

(c) Confusion matrix showing MC Dropout’s Normalized
predictions with a cost matrix applied

(d) Confusion matrix showing MC Dropout’s Normalized
predictions without a cost matrix applied

(e) Confusion matrix showing BbB’s Normalized predic­
tions with a cost matrix applied

(f) Confusion matrix showing BbB’s Normalized predic­
tions without a cost matrix applied

Figure 15: Confusion Matrices showing the use of a Cost matrix on the miss­classification of the Softmax
Response

20

(a)

(b)

Figure 16: These risk coverage curves show how the average test cost changes as more of the data is rejected.

21

ment, given that MC Dropout does have a higher
AUC value and it’s relatively easy to implement na­
ture, we would conclude that this method would be
adequate.

Larger computational time was demonstrated by
the use of running multiple forward passes, we dis­
play our results of this in minutes and seconds in ta­
ble 1, We measure computational time as the time
taken to produce predictions on our 5066 test sam­
ples. We note that, as expected, MC Dropout takes
roughly double the time of a standard SR and BbB
takes roughly 2 times longer than MC Dropout. We

use rough ratios as our times are dependant on hard­
ware used, but we presume that the ratio between
time taken will remain the same. We consider the
time taken to compute our results when compared to
a average human classifying skin lesions, it is obvi­
ous that all methods will be able to outperform man­
ual in terms of speed, but how fast these method need
to be is too reliant on the hardware and use case for
us to make a comment. We do not mention training
time here, as all models took roughly 8­9 hours to
train, training time would’ve been more important if
we considered using a deep ensemble of Neural Net­
works.

Method Accuracy Acc. Covg. AUC Avg. Test Cost Cost Covg. AUC Comp. Time
Softmax Response 79.69% 0.92 4.81 2.451 3:27

MC Dropout 79.73% 0.925 4.53 2.362 7:36
Bayes by Backprop 78.96% 0.919 4.35 1.963 12:50

Table 1: Table showing an overview of useful results, including the Area Under Curve (AUC) values for our
risk coverage curves. Acc. is shorthand for Accuracy, Covg. for Coverage and Comp. for Computation.

An important factor to consider when discussing
the cost of our methods would be the prior distribu­
tions of skin lesions in our population. Our model
was trained using the ISIC 2019 dataset, this dataset
had a major class imbalance. By training and test­
ing our model on this dataset we acknowledge our
assumption that the number of samples of each clas­
sification in the dataset are representative of the gen­
eral population. We also note that our cost coverage
curves are dependant upon this population, SCC was
a particularly costly miss­classification and yet was
less than 3% of the total data­set, any of our meth­
ods could’ve made some terrible classification deci­
sions in regards to SCC, but the overall cost would
be low because of a large volume of correct NV clas­
sifications. This should be considered when evaluat­
ing our model, BbB predicts costly on NV and re­
markably well on MEL, despite this, our test cost
AUC is still somewhat comparable to MC Dropout
and the SR due to their less costly predictions on
NV. If in a population in which 70% of skin lesion

images were MEL, then, using our currently trained
model, BbB test cost AUC would be notably lower
and if it was 70%NV then it would be notably higher.
It is remarkable then that, even though BbB per­
formed more costly on NV, which was over 50% of
the dataset, it still manages to maintain a lower test
cost over all values of coverage, from this we con­
clude that, if the cost of miss­classification is a con­
cern in a this specific population, with our specific
cost matrix, then BbB would perform best.

6 Conclusion

The primary aim of this project, to give a compari­
son between MC Dropout, SR and BbB in a differ­
ent environments, was a success through our through
our variety of experiments that we ran. We found
no notable difference in the accuracy of the proposed
methods, though MC Dropout did seem to perform

22

slightly better in this regard and its ease of imple­
mentation means that we could potentially conclude
its superiority over SR. Though BbB still performed
comparably on this metric, the complexity required
to implement and maintain as well as the extra time
taken to run the forward passes is not worth the result.
When we consider a cost­aware environment how­
ever, where the calibration of our methods as well as
the cost effectiveness is concerned, we find that BbB,
despite the unbalanced testing data, still outperforms
MCDropout and the SR.We are still concerned about
whether or not BbB would help in a human­machine
team, we would require more research into real world
results, but that is somewhat outside of the scope of
this project. We can conclude that, of these chosen
methods, BbB would most likely perform best given
our observations.

7 Appraisal

There were multiple learning curves to overcome
when this project was taken, a particularly difficult
area was the reading of academic literature, most pa­
pers presume a baseline of machine learning knowl­
edge and jargon, which can make them seem some­
what impenetrable to someone who has no prior
knowledge of the area. Alongside this, the papers the
student looked at also introduced somewhat abstract
concepts, such as Bayesian Inference, of which there
was also no prior experience. A particular area of
note was the implementation of BbB, thoughDropout
was easy to implement, due it being a built in method,
BbB was implemented by following the defined for­
mulas and using the Pytorch Gaussian classes, this
was the first time such abstract math was imple­
mented by the student and it proved challenging, but
surprisingly understanding of the concepts became
easier as implementation occurred, as the abstract
concepts stopped being abstract.

We recognise that many improvements could be
made to how our current network operates, our model
is not necessarily representative of how a model
would be implemented in a real world setting, usu­

ally we can combine our classifier with a network de­
signed to segment skin lesions, which usually gives
better results[1], but we did not have the time to also
train a segmentation model for this set of experi­
ments. We also could have used a larger model of
EfficientNet instead of the model which used a com­
pound scaling of 0, but given time constraints, we
stuckwith our current model. It would also have been
nice to compare our methods to the golden standard,
Deep Ensembles[21], but again, this would’ve taken
too much time to train.

Given more knowledge of the area, there are
some changes to the design that we would’ve made,
particularly, with plottting our graphs. We primar­
ily used matplotlib, but in reality there were some
other better candidates for plotting confusion matri­
ces, such as pycm, and for plotting reliability dia­
grams, such as netcal.

We show our Gantt chart in Appendix C, this was
created at the start of the project, creating the Gantt
chart so soon was somewhat difficult considering a
lack of knowledge of the area. Given this lack of
knowledge however, any immediate questions be­
came obvious after this chart was made. We deviated
a lot from this chart, as expected given how little the
student knew of the area, particularly, the student un­
derestimated the difficulty of tweaking parameters of
the model and how long that would take. Besides
this we performed weekly meetings to ensure that
progress was on track as well as creating a TODO
list at the end of every meeting to ensure we were all
in agreement of what was to be done. Minutes are
attached in Appendix D

8 Future Work

We have discussed some ideas for future work previ­
ously, but we now give a short recap of some areas
we particularly think should be explored further.

Some form of validation of our results should be
done, perhaps training multiple models and generat­

23

ing error bars on our coverage curves. As our results
are currently, we have only trained one model, and
cannot be certain whether these results will repeat as
more models are trained.

We have already acknowledged why our model is
highly specific to the ISIC 2019Dataset, given differ­
ent prior distribution of samples wewould find differ­
ent cost of results. More investigation could be done
into using different population of skin lesion, as well
as perhaps giving a more realistic position for this
model in the diagnostic pipeline, with a more realis­
tic cost matrix. As it stands, these results serve more
as a proof of concept and we require a more specific
problem, as well as some results of its performance,
not on its own, but as a diagnostic tool alongside ex­
pert dermatologists.

One other area that we neglected was our abil­
ity to measure aleatoric uncertainty. Currently our
model performs well on our 8 specific classes, but
given out­of­sample data we could use our uncer­
tainty metric to decide to classify as unknown. We
would then also need to incorporate some cost for
miss­classifying a sample as unknown.

9 Acknowledgements

This project would have not been achieved without
the help of Professor Stephen Mckenna and Mr. Ja­
cob Carse, both of which put up with months of
silly questions and my boring meetings. Without
their knowledge and help I would not have been able
to make even a small dent into the world of AI. I
would also like to thank the University of Dundee as
a whole, for allowing me to make use of their GPUs
which sped up the training and testing of my models
significantly.

10 Appendices

10.1 Appendix A

Source code

10.2 Appendix B

Technical manual

10.3 Appendix C

Gantt chart

10.4 Appendix D

Meeting minutes

10.5 Appendix E

Result images

10.6 Appendix E

Ethics assessment

10.7 Appendix F

Mid term progress report

24

11 References

References

[1] Adekanmi Adegun and Serestina Viriri. Deep
learning techniques for skin lesion analysis
and melanoma cancer detection: a survey of
state­of­the­art. Artificial Intelligence Review,
54(2):811–841, Feb 2021.

[2] A. S. Ahuja. The impact of artificial intel­
ligence in medicine on the future role of the
physician. PeerJ, 7:e7702, 2019.

[3] Aditi Singh Aryan Mobiny and Hien Van
Nguyen. Risk­aware machine learning classi­
fier for skin lesion diagnosis. Journal of Clini­
cal Medicine, 8(8), 2019.

[4] Christopher M. Bishop. Pattern Recognition
and Machine Learning (Information Science
and Statistics). Springer­Verlag, Berlin, Hei­
delberg, 2006.

[5] Charles Blundell, Julien Cornebise, Koray
Kavukcuoglu, and Daan Wierstra. Weight un­
certainty in neural networks, 2015.

[6] ”Leibig C., Allken V., Ayhan M. S., Berens P.,
and Wahl S.”. Leveraging uncertainty informa­
tion from deep neural networks for disease de­
tection. Sci Rep 7(17816), 2017.

[7] Noel Codella, David Gutman, M. Emre Celebi,
Brian Helba, Michael Marchetti, Stephen
Dusza, Aadi Kalloo, Konstantinos Liopyris,
Nabin Kumar Mishra, Harald Kittler, and Allan
Halpern. Skin lesion analysis towardmelanoma
detection: A challenge at the 2017 interna­
tional symposium on biomedical imaging (isbi),
hosted by the international skin imaging collab­
oration (isic). 10 2017.

[8] Marc Combalia, Noel C. F. Codella, Veron­
ica Rotemberg, Brian Helba, Veronica Vila­
plana, Ofer Reiter, Cristina Carrera, Alicia Bar­
reiro, Allan C. Halpern, Susana Puig, and Josep

Malvehy. Bcn20000: Dermoscopic lesions in
the wild, 2019.

[9] Terrance DeVries and Graham W. Taylor.
Leveraging uncertainty estimates for predicting
segmentation quality, 2018.

[10] Andre Estava, Brett Kuprel, Roberto A Novoa,
Justin Ko, SusanM Swetter, HelenMBlau, and
Sebeastian Thrun. Dermatologist­level classifi­
cation of skin cancer with deep neural networks.
Nature, 542(7639):115–118, 2017.

[11] Yarin Gal and Zoubin Ghahramani. Dropout as
a bayesian approximation: Representing model
uncertainty in deep learning. In Maria Flo­
rina Balcan and Kilian Q. Weinberger, editors,
Proceedings of The 33rd International Confer­
ence on Machine Learning, volume 48 of Pro­
ceedings of Machine Learning Research, pages
1050–1059, NewYork, NewYork, USA, 20–22
Jun 2016. PMLR.

[12] Yonatan Geifman and Ran El­Yaniv. Selec­
tive classification for deep neural networks. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wal­
lach, R. Fergus, S. Vishwanathan, and R. Gar­
nett, editors, Advances in Neural Information
Processing Systems, volume 30. Curran Asso­
ciates, Inc., 2017.

[13] Nils Gessert, Maximilian Nielsen, Mohsin
Shaikh, René Werner, and Alexander Schlae­
fer. Skin lesion classification using ensembles
of multi­resolution efficientnets with meta data.
MethodsX, 7:100864, Jan 2020.

[14] Kevin Gurney. An introduction to neural net­
works. UCL Press, 11 New Fetter Lane London
EC4P 4EE, 1 edition, 1995.

[15] Balazs Harangi. Skin lesion classification with
ensembles of deep convolutional neural net­
works. Journal of Biomedical Informatics,
86:25–32, 2018.

[16] Dan Hendrycks and Kevin Gimpel. A
baseline for detecting misclassified and out­
of­distribution examples in neural networks.
CoRR, abs/1610.02136, 2016.

25

[17] Sergey Ioffe and Christian Szegedy. Batch nor­
malization: Accelerating deep network training
by reducing internal covariate shift. In Fran­
cis Bach and David Blei, editors, Proceedings
of the 32nd International Conference on Ma­
chine Learning, volume 37 of Proceedings of
Machine Learning Research, pages 448–456,
Lille, France, 07–09 Jul 2015. PMLR.

[18] Mohamed A. Kassem, Khalid M. Hosny, and
MohamedM. Fouad. Skin lesions classification
into eight classes for isic 2019 using deep con­
volutional neural network and transfer learning.
IEEE Access, 8:114822–114832, 2020.

[19] Diederik P Kingma and Max Welling. Auto­
encoding variational bayes, 2014.

[20] Anders Krogh and John Hertz. A simple weight
decay can improve generalization. In J. Moody,
S. Hanson, and R. P. Lippmann, editors, Ad­
vances in Neural Information Processing Sys­
tems, volume 4. Morgan­Kaufmann, 1992.

[21] Balaji Lakshminarayanan, Alexander Pritzel,
and Charles Blundell. Simple and scalable pre­
dictive uncertainty estimation using deep en­
sembles, 2017.

[22] Li Liu, Wanli Ouyang, Xiaogang Wang, Paul
Fieguth, Jie Chen, Xinwang Liu, and Matti
Pietikäinen. Deep learning for generic object
detection: A survey. International Journal of
Computer Vision, 128(2):261–318, Feb 2020.

[23] Vinod Nair and Geoffrey E. Hinton. Rectified
linear units improve restricted boltzmann ma­
chines. In Proceedings of the 27th Interna­
tional Conference on International Conference
on Machine Learning, ICML’10, page 807–
814, Madison, WI, USA, 2010. Omnipress.

[24] Erdem Okur and Mehmet Turkan. A survey on
automated melanoma detection. Engineering
Applications of Artificial Intelligence, 73:50–
67, 2018.

[25] Leslie N. Smith. Cyclical learning rates for
training neural networks. In 2017 IEEE Winter
Conference on Applications of Computer Vision
(WACV), pages 464–472, 2017.

[26] Nitish Srivastava, Geoffrey Hinton, Alex Krix­
hevsky, Ilya Sutskever, and Ruslan Salakhutdi­
nov. Dropout: A simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

[27] Ilya Sutskever, James Martens, George Dahl,
and Geoffrey Hinton. On the importance of
initialization and momentum in deep learning.
In Sanjoy Dasgupta and David McAllester, edi­
tors, Proceedings of the 30th International Con­
ference on Machine Learning, volume 28 of
Proceedings of Machine Learning Research,
pages 1139–1147, Atlanta, Georgia, USA, 17–
19 Jun 2013. PMLR.

[28] Mingxing Tan and Quoc V. Le. Efficient­
net: Rethinking model scaling for convolu­
tional neural networks, 2020.

[29] Philipp Tschandl, Cliff Rosendahl, and Harald
Kittler. The ham10000 dataset, a large col­
lection of multi­source dermatoscopic images
of common pigmented skin lesions. Scientific
Data, 5(1):180161, Aug 2018.

[30] Philipp Tschandl, Christoph Sinz, and Har­
ald Kittler. Domain­specific classification­
pretrained fully convolutional network en­
coders for skin lesion segmentation. Computers
in Biology and Medicine, 104:111–116, 2019.

26

